Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Commun Biol ; 7(1): 276, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38448753

RESUMO

Immune checkpoint blockade has yet to produce robust anti-cancer responses for prostate cancer. Sialyltransferases have been shown across several solid tumours, including breast, melanoma, colorectal and prostate to promote immune suppression by synthesising sialoglycans, which act as ligands for Siglec receptors. We report that ST3 beta-galactoside alpha-2,3-sialyltransferase 1 (ST3Gal1) levels negatively correlate with androgen signalling in prostate tumours. We demonstrate that ST3Gal1 plays an important role in modulating tumour immune evasion through the synthesises of sialoglycans with the capacity to engage the Siglec-7 and Siglec-9 immunoreceptors preventing immune clearance of cancer cells. Here, we provide evidence of the expression of Siglec-7/9 ligands and their respective immunoreceptors in prostate tumours. These interactions can be modulated by enzalutamide and may maintain immune suppression in enzalutamide treated tumours. We conclude that the activity of ST3Gal1 is critical to prostate cancer anti-tumour immunity and provide rationale for the use of glyco-immune checkpoint targeting therapies in advanced prostate cancer.


Assuntos
Feniltioidantoína , Neoplasias da Próstata , beta-Galactosídeo alfa-2,3-Sialiltransferase , Masculino , Humanos , Neoplasias da Próstata/tratamento farmacológico , Benzamidas/farmacologia , Nitrilas , Ligantes
2.
Glycobiology ; 33(12): 1155-1171, 2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-37847613

RESUMO

Aberrant glycosylation is a hallmark of cancer and is not just a consequence, but also a driver of a malignant phenotype. In prostate cancer, changes in fucosylated and sialylated glycans are common and this has important implications for tumor progression, metastasis, and immune evasion. Glycans hold huge translational potential and new therapies targeting tumor-associated glycans are currently being tested in clinical trials for several tumor types. Inhibitors targeting fucosylation and sialylation have been developed and show promise for cancer treatment, but translational development is hampered by safety issues related to systemic adverse effects. Recently, potent metabolic inhibitors of sialylation and fucosylation were designed that reach higher effective concentrations within the cell, thereby rendering them useful tools to study sialylation and fucosylation as potential candidates for therapeutic testing. Here, we investigated the effects of global metabolic inhibitors of fucosylation and sialylation in the context of prostate cancer progression. We find that these inhibitors effectively shut down the synthesis of sialylated and fucosylated glycans to remodel the prostate cancer glycome with only minor apparent side effects on other glycan types. Our results demonstrate that treatment with inhibitors targeting fucosylation or sialylation decreases prostate cancer cell growth and downregulates the expression of genes and proteins important in the trajectory of disease progression. We anticipate our findings will lead to the broader use of metabolic inhibitors to explore the role of fucosylated and sialylated glycans in prostate tumor pathology and may pave the way for the development of new therapies for prostate cancer.


Assuntos
Neoplasias da Próstata , Masculino , Humanos , Glicosilação , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/metabolismo , Processamento de Proteína Pós-Traducional , Polissacarídeos/metabolismo
3.
Sci Rep ; 13(1): 17031, 2023 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-37813880

RESUMO

Prostate cancer is the most common cancer in men and a major cause of cancer related deaths worldwide. Nearly all affected men develop resistance to current therapies and there is an urgent need to develop new treatments for advanced disease. Aberrant glycosylation is a common feature of cancer cells implicated in all of the hallmarks of cancer. A major driver of aberrant glycosylation in cancer is the altered expression of glycosylation enzymes. Here, we show that GCNT1, an enzyme that plays an essential role in the formation of core 2 branched O-glycans and is crucial to the final definition of O-glycan structure, is upregulated in aggressive prostate cancer. Using in vitro and in vivo models, we show GCNT1 promotes the growth of prostate tumours and can modify the glycome of prostate cancer cells, including upregulation of core 2 O-glycans and modifying the O-glycosylation of secreted glycoproteins. Furthermore, using RNA sequencing, we find upregulation of GCNT1 in prostate cancer cells can alter oncogenic gene expression pathways important in tumour growth and metastasis. Our study highlights the important role of aberrant O-glycosylation in prostate cancer progression and provides novel insights regarding the mechanisms involved.


Assuntos
Neoplasias da Próstata , Humanos , Masculino , Glicosilação , Polissacarídeos/metabolismo , Próstata/patologia , Neoplasias da Próstata/patologia
4.
Oncogene ; 42(43): 3161-3168, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37752235

RESUMO

Prostate cancer progression is connected to the activity of conventional oncogenes and tumour suppressors and driven by circulating steroid hormones. A key issue has been how to identify and care for aggressively developing prostate tumours. Here we discuss how expression of the splicing regulators ESRP1 and ESRP2, and how their role as "masterminds" of epithelial splicing patterns, have been identified as markers of aggressively proliferating prostate primary tumours. We suggest that the origin of prostate cancer within epithelial cells, and the subsequent association of ESRP1 and ESRP2 expression with more aggressive disease progression, identify ESRP1 and ESRP2 as lineage survival oncogenes. To move this field on in the future it will be important to identify the gene expression targets controlled by ESRP1/2 that regulate prostate cancer proliferation. Potential future therapies could be designed to target ESRP1 and ESRP2 protein activity or their regulated splice isoforms in aggressive prostate tumours. Design of these therapies is potentially complicated by the risk of producing a more mesenchymal splicing environment that might promote tumour metastasis.

5.
J Pathol ; 261(1): 71-84, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37550801

RESUMO

Aberrant glycosylation is a universal feature of cancer cells, and cancer-associated glycans have been detected in virtually every cancer type. A common change in tumour cell glycosylation is an increase in α2,6 sialylation of N-glycans, a modification driven by the sialyltransferase ST6GAL1. ST6GAL1 is overexpressed in numerous cancer types, and sialylated glycans are fundamental for tumour growth, metastasis, immune evasion, and drug resistance, but the role of ST6GAL1 in prostate cancer is poorly understood. Here, we analyse matched cancer and normal tissue samples from 200 patients and verify that ST6GAL1 is upregulated in prostate cancer tissue. Using MALDI imaging mass spectrometry (MALDI-IMS), we identify larger branched α2,6 sialylated N-glycans that show specificity to prostate tumour tissue. We also monitored ST6GAL1 in plasma samples from >400 patients and reveal ST6GAL1 levels are significantly increased in the blood of men with prostate cancer. Using both in vitro and in vivo studies, we demonstrate that ST6GAL1 promotes prostate tumour growth and invasion. Our findings show ST6GAL1 introduces α2,6 sialylated N-glycans on prostate cancer cells and raise the possibility that prostate cancer cells can secrete active ST6GAL1 enzyme capable of remodelling glycans on the surface of other cells. Furthermore, we find α2,6 sialylated N-glycans expressed by prostate cancer cells can be targeted using the sialyltransferase inhibitor P-3FAX -Neu5Ac. Our study identifies an important role for ST6GAL1 and α2,6 sialylated N-glycans in prostate cancer progression and highlights the opportunity to inhibit abnormal sialylation for the development of new prostate cancer therapeutics. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
Neoplasias da Próstata , Sialiltransferases , Masculino , Humanos , Glicosilação , Polissacarídeos/química , Polissacarídeos/metabolismo , Reino Unido , beta-D-Galactosídeo alfa 2-6-Sialiltransferase , Antígenos CD/metabolismo
6.
Oncol Lett ; 25(4): 163, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36960185

RESUMO

Prostate cancer (PCa) is one of the most prominent causes of cancer-related mortality in the male population. A highly impactful prognostic factor for patients diagnosed with PCa is the presence or absence of bone metastases. The formation of secondary tumours at the bone is the most commonly observed site for the establishment of PCa metastases and is associated with reduced survival of patients in addition to a cohort of life-debilitating symptoms, including mobility issues and chronic pain. Despite the prevalence of this disease presentation and the high medical relevance of bone metastases, the mechanisms underlying the formation of metastases to the bone and the understanding of what drives the osteotropism exhibited by prostate tumours remain to be fully elucidated. This lack of in-depth understanding manifests in limited effective treatment options for patients with advanced metastatic PCa and culminates in the low rate of survival observed for this sub-set of patients. The present review aims to summarise the most recent promising advances in the understanding of how and why prostate tumours metastasise to the bone, with the ultimate aim of highlighting novel treatment and prognostic targets, which may provide the opportunity to improve the diagnosis and treatment of patients with PCa with bone metastases.

7.
Cancers (Basel) ; 14(17)2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-36077781

RESUMO

The surface of every eukaryotic cell is coated in a thick layer of glycans that acts as a key interface with the extracellular environment. Cancer cells have a different 'glycan coat' to healthy cells and aberrant glycosylation is a universal feature of cancer cells linked to all of the cancer hallmarks. This means glycans hold huge potential for the development of new diagnostic and therapeutic strategies. One key change in tumour glycosylation is increased sialylation, both on N-glycans and O-glycans, which leads to a dense forest of sialylated structures covering the cell surface. This hypersialylation has far-reaching consequences for cancer cells, and sialylated glycans are fundamental in tumour growth, metastasis, immune evasion and drug resistance. The development of strategies to inhibit aberrant sialylation in cancer represents an important opportunity to develop new therapeutics. Here, I summarise recent advances to target aberrant sialylation in cancer, including the development of sialyltransferase inhibitors and strategies to inhibit Siglecs and Selectins, and discuss opportunities for the future.

8.
Sci Rep ; 12(1): 13884, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35974042

RESUMO

Cysteine rich with epidermal growth factor (EGF)-like domains 2 (CRELD2) is an endoplasmic reticulum (ER) resident chaperone protein with calcium binding properties. CRELD2 is an ER-stress regulated gene that has been implicated in the pathogenesis of skeletal dysplasias and has been shown to play an important role in the differentiation of chondrocytes and osteoblasts. Despite CRELD2 having an established role in skeletal development and bone formation, its role in osteoclasts is currently unknown. Here we show for the first time that CRELD2 plays a novel role in trafficking transforming growth factor beta 1 (TGF-ß1), which is linked to an upregulation in the expression of Nfat2, the master regulator of osteoclast differentiation in early osteoclastogenesis. Despite this finding, we show that overexpressing CRELD2 impaired osteoclast differentiation due to a reduction in the activity of the calcium-dependant phosphatase, calcineurin. This in turn led to a subsequent block in the dephosphorylation of nuclear factor of activated T cells 1 (NFATc1), preventing its nuclear localisation and activation as a pro-osteoclastogenic transcription factor. Our exciting results show that the overexpression of Creld2 in osteoclasts impaired calcium release from the ER which is essential for activating calcineurin and promoting osteoclastogenesis. Therefore, our data proposes a novel inhibitory role for this calcium-binding ER-resident chaperone in modulating calcium flux during osteoclast differentiation which has important implications in our understanding of bone remodelling and the pathogenesis of skeletal diseases.


Assuntos
Cálcio , Osteoclastos , Calcineurina/metabolismo , Cálcio/metabolismo , Diferenciação Celular/fisiologia , Retículo Endoplasmático/metabolismo , Fatores de Transcrição NFATC/metabolismo , Osteoclastos/metabolismo , Ligante RANK/metabolismo
9.
Int J Mol Sci ; 23(15)2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35897761

RESUMO

Prostate cancer is the most common cancer in men, and it is primarily driven by androgen steroid hormones. The glycosylation enzyme EDEM3 is controlled by androgen signalling and is important for prostate cancer viability. EDEM3 is a mannosidase that trims mannose from mis-folded glycoproteins, tagging them for degradation through endoplasmic reticulum-associated degradation. Here, we find that EDEM3 is upregulated in prostate cancer, and this is linked to poorer disease-free survival. Depletion of EDEM3 from prostate cancer cells induces an ER stress transcriptomic signature, and EDEM3 overexpression is cyto-protective against ER stressors. EDEM3 expression also positively correlates with genes involved in the unfolded protein response in prostate cancer patients, and its expression can be induced through exposure to radiation. Importantly, the overexpression of EDEM3 promotes radio-resistance in prostate cancer cells and radio-resistance can be reduced through depletion of EDEM3. Our data thus implicate increased levels of EDEM3 with a role in prostate cancer pathology and reveal a new therapeutic opportunity to sensitise prostate tumours to radiotherapy.


Assuntos
Degradação Associada com o Retículo Endoplasmático , Neoplasias da Próstata , Androgênios/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Retículo Endoplasmático/metabolismo , Humanos , Masculino , Manosidases/metabolismo , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , alfa-Manosidase/metabolismo
10.
Int J Mol Sci ; 22(1)2021 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-33466384

RESUMO

Aberrant glycosylation is a universal feature of cancer cells that can impact all steps in tumour progression from malignant transformation to metastasis and immune evasion. One key change in tumour glycosylation is altered core fucosylation. Core fucosylation is driven by fucosyltransferase 8 (FUT8), which catalyses the addition of α1,6-fucose to the innermost GlcNAc residue of N-glycans. FUT8 is frequently upregulated in cancer, and plays a critical role in immune evasion, antibody-dependent cellular cytotoxicity (ADCC), and the regulation of TGF-ß, EGF, α3ß1 integrin and E-Cadherin. Here, we summarise the role of FUT8 in various cancers (including lung, liver, colorectal, ovarian, prostate, breast, melanoma, thyroid, and pancreatic), discuss the potential mechanisms involved, and outline opportunities to exploit FUT8 as a critical factor in cancer therapeutics in the future.


Assuntos
Fucosiltransferases/metabolismo , Neoplasias/metabolismo , Animais , Fucose/metabolismo , Glicosilação , Humanos , Polissacarídeos/metabolismo
11.
Clin Chim Acta ; 502: 167-173, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31870793

RESUMO

While the development of immunotherapies for cancer treatment offer significant promise across several cancers, still only a small subset of patients respond to immune based monotherapies. As such, attention has turned to the development of combination therapies. These use conventional cancer treatments such as chemotherapy to sensitise tumours to immunotherapy. Here, we summarise key research, highlighting the exciting potential of tumour associated glycans as therapeutic targets to sensitise tumours to immunotherapy. When cells undergo carcinogenesis they reprogram their glyco-code. Several cancer associated glycans have been identified, and therapies targeting them are under development. Proteins containing carbohydrate binding domains (lectins) are expressed by many immune cell subtypes, and upon glycan binding, transduce immune modulatory signals that regulate the tumour immune microenvironment.


Assuntos
Imunoterapia , Neoplasias/imunologia , Neoplasias/terapia , Polissacarídeos/imunologia , Humanos , Neoplasias/patologia , Microambiente Tumoral/imunologia
12.
Medicines (Basel) ; 6(4)2019 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-31614918

RESUMO

Cell surface carbohydrates (known as glycans) are often aberrantly expressed or found at atypical levels in cancer. Glycans can impact all steps in tumour progression, from malignant transformation to metastasis, and have roles in all the cancer hallmarks. An increased understanding of glycans in the metastatic cascade offers exciting new therapeutic opportunities. Glycan-based targeting strategies are currently being tested in clinical trials and are a rich and untapped frontier for development. As we learn more about cancer glycobiology, new targets will continue to emerge for drug design. One key change in tumour glycosylation is the upregulation of cancer-associated sialylated glycans. Abnormal sialylation is integral to tumour growth, metastasis and immune evasion; therefore, targeting sialic acid moieties in cancer could be of high therapeutic value. Here, we summarise the changes to sialic acid biology in cancer and discuss recent advances and technologies bringing sialic-acid targeting treatments to the forefront of cancer therapeutics.

13.
Elife ; 82019 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-31478829

RESUMO

Prostate is the most frequent cancer in men. Prostate cancer progression is driven by androgen steroid hormones, and delayed by androgen deprivation therapy (ADT). Androgens control transcription by stimulating androgen receptor (AR) activity, yet also control pre-mRNA splicing through less clear mechanisms. Here we find androgens regulate splicing through AR-mediated transcriptional control of the epithelial-specific splicing regulator ESRP2. Both ESRP2 and its close paralog ESRP1 are highly expressed in primary prostate cancer. Androgen stimulation induces splicing switches in many endogenous ESRP2-controlled mRNA isoforms, including splicing switches correlating with disease progression. ESRP2 expression in clinical prostate cancer is repressed by ADT, which may thus inadvertently dampen epithelial splice programmes. Supporting this, treatment with the AR antagonist bicalutamide (Casodex) induced mesenchymal splicing patterns of genes including FLNB and CTNND1. Our data reveals a new mechanism of splicing control in prostate cancer with important implications for disease progression.


Assuntos
Processamento Alternativo/efeitos dos fármacos , Androgênios/metabolismo , Neoplasias da Próstata/patologia , Proteínas de Ligação a RNA/biossíntese , Transcrição Gênica , Células Cultivadas , Humanos , Masculino , Proteínas de Ligação a RNA/genética , Receptores Androgênicos/metabolismo
14.
Oncol Lett ; 18(2): 983-989, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31423157

RESUMO

Aberrant glycosylation is a universal feature of cancer cells and there is now overwhelming evidence that glycans can modulate pathways intrinsic to tumour cell biology. Glycans are important in all of the cancer hallmarks and there is a renewed interest in the glycomic profiling of tumours to improve early diagnosis, determine patient prognosis and identify targets for therapeutic intervention. One of the most widely occurring cancer associated changes in glycosylation is abnormal sialylation which is often accompanied by changes in sialyltransferase activity. Several sialyltransferases are implicated in cancer, but in recent years ST6 ß-galactoside α-2,6-sialyltransferase 1 (ST6GAL1) has become increasingly dominant in the literature. ST6GAL1 catalyses the addition of α2,6-linked sialic acids to terminal N-glycans and can modify glycoproteins and/or glycolipids. ST6GAL1 is upregulated in numerous types of cancer (including pancreatic, prostate, breast and ovarian cancer) and can promote growth, survival and metastasis. The present review discusses ST6GAL in relation to the hallmarks of cancer, and highlights its key role in multiple mechanisms intrinsic to tumour cell biology.

15.
Biochim Biophys Acta Gene Regul Mech ; 1862(11-12): 194388, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31152916

RESUMO

Lung cancer has the highest mortality rate of all cancers worldwide. Lung cancer is a very heterogeneous disease that is often diagnosed at later stages which have a poor prognosis. Aberrant alternative splicing patterns found in lung cancer contribute to important cell functions. These include changes in splicing for the BCL2L1, MDM2, MDM4, NUMB and MET genes during lung tumourigenesis, to affect pathways involved in apoptosis, cell proliferation and cellular cohesion. Global analyses of RNASeq datasets suggest there may be many more potentially influential aberrant splicing events that need to be investigated in lung cancer. Changes in expression of the splicing factors that regulate alternative splicing events have also been identified in lung cancer. Of these, changes in expression of QKI, RBM4, RBM5, RBM6, RBM10 and SRSF1 proteins regulate many of the most frequently referenced aberrant splicing events in lung cancer. The expanding list of genes known to be aberrantly spliced in lung cancer along with the altered expression of splicing factors that regulate them are providing new clues as to how lung cancer develops, and how these events can be exploited for better treatment. This article is part of a Special Issue entitled: RNA structure and splicing regulation edited by Francisco Baralle, Ravindra Singh and Stefan Stamm.


Assuntos
Processamento Alternativo , Neoplasias Pulmonares/genética , Fatores de Processamento de RNA/genética , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Análise de Sequência de RNA
16.
Oncol Lett ; 17(3): 2569-2575, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30854032

RESUMO

Pancreatic adenocarcinoma is a lethal disease with a 5-year survival rate of <5%, the lowest of all types of cancer. The diagnosis of pancreatic cancer relies on imaging and tissue biopsy, and the only curative therapy is complete surgical resection. Pancreatic cancer has the propensity to metastasise at an early stage and the majority of patients are diagnosed when surgery is no longer an option. Hence, there is an urgent need to identify biomarkers to enable early diagnosis, and to develop new therapeutic strategies. One approach for this involves targeting cancer-associated glycans. The most widely used serological marker in pancreatic cancer is the carbohydrate antigen CA 19-9 which contains a glycan known as sialyl Lewis A (sLeA). The CA 19-9 assay is used routinely to monitor response to treatment, but concerns have been raised about its sensitivity and specificity as a diagnostic biomarker. In addition to sLeA, a wide range of alterations to other important glycans have been observed in pancreatic cancer. These include increases in the sialyl Lewis X antigen (sLex), an increase in truncated O-glycans (Tn and sTn), increased branched and fucosylated N-glycans, upregulation of specific proteoglycans and galectins, and increased O-GlcNAcylation. Growing evidence supports crucial roles for glycans in all stages of cancer progression, and it is well established that glycans regulate tumour proliferation, invasion and metastasis. The present review describes the biological significance of glycans in pancreatic cancer, and discusses the clinical value of exploiting aberrant glycosylation to improve the diagnosis and treatment of this deadly disease.

17.
Int J Mol Sci ; 20(6)2019 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-30893936

RESUMO

Prostate cancer is the most commonly diagnosed malignancy in men, claiming over350,000 lives worldwide annually. Current diagnosis relies on prostate-specific antigen (PSA)testing, but this misses some aggressive tumours, and leads to the overtreatment of non-harmfuldisease. Hence, there is an urgent unmet clinical need to identify new diagnostic and prognosticbiomarkers. As prostate cancer is a heterogeneous and multifocal disease, it is likely that multiplebiomarkers will be needed to guide clinical decisions. Fluid-based biomarkers would be ideal, andattention is now turning to minimally invasive liquid biopsies, which enable the analysis oftumour components in patient blood or urine. Effective diagnostics using liquid biopsies willrequire a multifaceted approach, and a recent high-profile review discussed combining multipleanalytes, including changes to the tumour transcriptome, epigenome, proteome, and metabolome.However, the concentration on genomics-based paramaters for analysing liquid biopsies ispotentially missing a goldmine. Glycans have shown huge promise as disease biomarkers, anddata suggests that integrating biomarkers across multi-omic platforms (including changes to theglycome) can improve the stratification of patients with prostate cancer. A wide range ofalterations to glycans have been observed in prostate cancer, including changes to PSAglycosylation, increased sialylation and core fucosylation, increased O-GlcNacylation, theemergence of cryptic and branched N-glyans, and changes to galectins and proteoglycans. In thisreview, we discuss the huge potential to exploit glycans as diagnostic and prognostic biomarkersfor prostate cancer, and argue that the inclusion of glycans in a multi-analyte liquid biopsy test forprostate cancer will help maximise clinical utility.


Assuntos
Biomarcadores Tumorais/metabolismo , Polissacarídeos/metabolismo , Neoplasias da Próstata/metabolismo , Exossomos/metabolismo , Glicosilação , Humanos , Masculino , Antígeno Prostático Específico/metabolismo
18.
F1000Res ; 7: 1189, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30271587

RESUMO

Background: Androgen steroid hormones are key drivers of prostate cancer. Previous work has shown that androgens can drive the expression of alternative mRNA isoforms as well as transcriptional changes in prostate cancer cells. Yet to what extent androgens control alternative mRNA isoforms and how these are expressed and differentially regulated in prostate tumours is unknown. Methods: Here we have used RNA-Seq data to globally identify alternative mRNA isoform expression under androgen control in prostate cancer cells, and profiled the expression of these mRNA isoforms in clinical tissue. Results: Our data indicate androgens primarily switch mRNA isoforms through alternative promoter selection. We detected 73 androgen regulated alternative transcription events, including utilisation of 56 androgen-dependent alternative promoters, 13 androgen-regulated alternative splicing events, and selection of 4 androgen-regulated alternative 3' mRNA ends. 64 of these events are novel to this study, and 26 involve previously unannotated isoforms. We validated androgen dependent regulation of 17 alternative isoforms by quantitative PCR in an independent sample set. Some of the identified mRNA isoforms are in genes already implicated in prostate cancer (including LIG4, FDFT1 and RELAXIN), or in genes important in other cancers (e.g. NUP93 and MAT2A). Importantly, analysis of transcriptome data from 497 tumour samples in the TGCA prostate adenocarcinoma (PRAD) cohort identified 13 mRNA isoforms (including TPD52, TACC2 and NDUFV3) that are differentially regulated in localised prostate cancer relative to normal tissue, and 3 ( OSBPL1A, CLK3 and TSC22D3) which change significantly with Gleason grade and  tumour stage. Conclusions: Our findings dramatically increase the number of known androgen regulated isoforms in prostate cancer, and indicate a highly complex response to androgens in prostate cancer cells that could be clinically important.


Assuntos
Processamento Alternativo , Androgênios/fisiologia , Neoplasias da Próstata/genética , RNA Mensageiro/genética , Regiões 5' não Traduzidas , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Neoplasias da Próstata/patologia , Isoformas de Proteínas/genética , RNA não Traduzido/genética
19.
Sci Rep ; 7(1): 5249, 2017 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-28701765

RESUMO

Cell migration drives cell invasion and metastatic progression in prostate cancer and is a major cause of mortality and morbidity. However the mechanisms driving cell migration in prostate cancer patients are not fully understood. We previously identified the cancer-associated cell migration protein Tetraspanin 1 (TSPAN1) as a clinically relevant androgen regulated target in prostate cancer. Here we find that TSPAN1 is acutely induced by androgens, and is significantly upregulated in prostate cancer relative to both normal prostate tissue and benign prostate hyperplasia (BPH). We also show for the first time, that TSPAN1 expression in prostate cancer cells controls the expression of key proteins involved in cell migration. Stable upregulation of TSPAN1 in both DU145 and PC3 cells significantly increased cell migration and induced the expression of the mesenchymal markers SLUG and ARF6. Our data suggest TSPAN1 is an androgen-driven contributor to cell survival and motility in prostate cancer.


Assuntos
Androgênios/farmacologia , Biomarcadores Tumorais/metabolismo , Movimento Celular/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Hiperplasia Prostática/patologia , Neoplasias da Próstata/patologia , Tetraspaninas/metabolismo , Apoptose , Biomarcadores Tumorais/genética , Estudos de Casos e Controles , Proliferação de Células , Transição Epitelial-Mesenquimal , Seguimentos , Humanos , Masculino , Prognóstico , Hiperplasia Prostática/tratamento farmacológico , Hiperplasia Prostática/metabolismo , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/metabolismo , Tetraspaninas/genética , Células Tumorais Cultivadas
20.
Hum Genet ; 136(9): 1143-1154, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28382513

RESUMO

Changes in mRNA splice patterns have been associated with key pathological mechanisms in prostate cancer progression. The androgen receptor (abbreviated AR) transcription factor is a major driver of prostate cancer pathology and activated by androgen steroid hormones. Selection of alternative promoters by the activated AR can critically alter gene function by switching mRNA isoform production, including creating a pro-oncogenic isoform of the normally tumour suppressor gene TSC2. A number of androgen-regulated genes generate alternatively spliced mRNA isoforms, including a prostate-specific splice isoform of ST6GALNAC1 mRNA. ST6GALNAC1 encodes a sialyltransferase that catalyses the synthesis of the cancer-associated sTn antigen important for cell mobility. Genetic rearrangements occurring early in prostate cancer development place ERG oncogene expression under the control of the androgen-regulated TMPRSS2 promoter to hijack cell behaviour. This TMPRSS2-ERG fusion gene shows different patterns of alternative splicing in invasive versus localised prostate cancer. Alternative AR mRNA isoforms play a key role in the generation of prostate cancer drug resistance, by providing a mechanism through which prostate cancer cells can grow in limited serum androgen concentrations. A number of splicing regulator proteins change expression patterns in prostate cancer and may help drive key stages of disease progression. Up-regulation of SRRM4 establishes neuronal splicing patterns in neuroendocrine prostate cancer. The splicing regulators Sam68 and Tra2ß increase expression in prostate cancer. The SR protein kinase SRPK1 that modulates the activity of SR proteins is up-regulated in prostate cancer and has already given encouraging results as a potential therapeutic target in mouse models.


Assuntos
Regulação Neoplásica da Expressão Gênica , Proteínas de Neoplasias , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Splicing de RNA , RNA Mensageiro , RNA Neoplásico , Proteínas Adaptadoras de Transdução de Sinal/biossíntese , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Proteínas de Ligação a DNA/biossíntese , Proteínas de Ligação a DNA/genética , Humanos , Masculino , Camundongos , Proteínas de Neoplasias/biossíntese , Proteínas de Neoplasias/genética , Proteínas do Tecido Nervoso/biossíntese , Proteínas do Tecido Nervoso/genética , Neoplasias da Próstata/terapia , Proteínas Serina-Treonina Quinases/biossíntese , Proteínas Serina-Treonina Quinases/genética , RNA Neoplásico/genética , RNA Neoplásico/metabolismo , Proteínas de Ligação a RNA/biossíntese , Proteínas de Ligação a RNA/genética , Fatores de Processamento de Serina-Arginina/biossíntese , Fatores de Processamento de Serina-Arginina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...